Neural network modelling of non-linear hydrological relationships
نویسنده
چکیده
Two recent studies have suggested that neural network modelling offers no worthwhile improvements in comparison to the application of weighted linear transfer functions for capturing the non-linear nature of hydrological relationships. The potential of an artificial neural network to perform simple non-linear hydrological transformations under controlled conditions is examined in this paper. Eight neural network models were developed: four full or partial emulations of a recognised non-linear hydrological rainfallrunoff model; four solutions developed on an identical set of inputs and a calculated runoff coefficient output. The use of different input combinations enabled the competencies of solutions developed on a reduced number of parameters to be assessed. The selected hydrological model had a limited number of inputs and contained no temporal component. The modelling process was based on a set of random inputs that had a uniform distribution and spanned a modest range of possibilities. The initial cloning operations permitted a direct comparison to be performed with the equation-based relationship. It also provided more general information about the power of a neural network to replicate mathematical equations and model modest non-linear relationships. The second group of experiments explored a different relationship that is of hydrological interest; the target surface contained a stronger set of non-linear properties and was more challenging. Linear modelling comparisons were performed against traditional least squares multiple linear regression solutions developed on identical datasets. The reported results demonstrate that neural networks are capable of modelling nonlinear hydrological processes and are therefore appropriate tools for hydrological modelling. Correspondence to: R. J. Abrahart ([email protected])
منابع مشابه
Neural network emulation of a rainfall-runoff model
The potential of an artificial neural network to perform simple non-linear hydrological transformations is examined. Four neural network models were developed to emulate different facets of a recognised non-linear hydrological transformation equation that possessed a small number of variables and contained no temporal component. The 5 modeling process was based on a set of uniform random distri...
متن کاملInvestigating Financial Crisis Prediction Power using Neural Network and Non-Linear Genetic Algorithm
Bankruptcy is an event with strong impacts on management, shareholders, employees, creditors, customers and other stakeholders, so as bankruptcy challenges the country both socially and economically. Therefore, correct prediction of bankruptcy is of high importance in the financial world. This research intends to investigate financial crisis prediction power using models based on Neural Network...
متن کاملArtificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river
ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...
متن کاملSelf-Organizing Polynomial Neural Network for Modelling Complex Hydrological Processes
Artificial neural networks (ANNs) have been used increasingly for modelling com-plex hydrological processes. In this paper, we present a self-organizing polynomial neural network (SOPNN) algorithm, which combines the theory of bio-cybernetic self-organizing polynomial (SOP) with the artificial neural network (ANN) approach. With the SOP feature of seeking the best combination of polynomial mode...
متن کاملOverview of the artificial neural networks and fuzzy logic applications in operational hydrological forecasting systems
Damage due to flooding has increase in many countries in the last years, and due to the global climate change, which is now recognized as a real threat, an increase in the occurrence of flooding events and especially of flash flooding events is likely to continue into the future. In those conditions and because building new flood defences structures for defending vulnerable areas has serious fi...
متن کامل